The main Parts    Shaft Chart of nomograms  Reference information

Beam deflection under load
Graphic-analytical calculation of the deflection of a metal bar (pipe) of a round or square profile

In the given section four kinds of loadings and four various forms of section of a beam - a square pipe, a round pipe, a square beam, a round beam are considered.

Calculated (calculation formulas are given): moment of resistance, moment of inertia, bending moment, maximum load (permissible load), deflection (bending).

With the help of graphic-analytical calculation, the geometric parameters of a metal beam of a round or square profile are selected for a given maximum load.

 

Formulas for Calculating Beam Deflection

Formulas for definition of the moment of resistance W and the moment of inertia J:

- for a square beam:

W = h03 / 6,                                         J = h04 / 12;

- for a round beam:

W = 0.0982 · d03,                                          J = 0.0481 · d04;

- for a pipe of a square structure:

W = [ h04 -h14 ] / 6 · h0,                      J = [ h04 - h14 ] / 12;

- for a pipe of a round structure:

W = 0.0982 · [ d04 - d14 ] / d0,            J = 0.0491 · [ d04 - d14 ];

 Formulas for definition - the permissible load  Fmax, the bending moment  Ì, the deflection  ó in the most dangerous section:

- for a square beam:

M1 = F · L,             F1max = s· W / L,            y = F · L3 / [ 3 · E · J];

- for a round beam:

M2 = F · L / 2,        F2max = 2 ·s· W / L,         y = F · L3 / [ 8 · E · J ],                 F = q · L (q - linear load);

- for a round beam:

M3 = F · L / 4,        F3max = 4 ·s· W / L,         y = F · L3 / [ 48 · E · J ];

- for a pipe of a round structure:

M4 = F · L / 8,        F4max = 8 ·s· W / L,         y = 5 · F · L3 / [ 384 · E · J ],        F = q · L.

  

        A bar - is a construct in which one of the three dimensions that determine its dimensions (length) is much larger than the other two.
              When considering the processes of tension or compression, the beam can be called a rod, when bending - beam.
              The rod is called thin-walled if the ratio of the width of the walls to the thickness is more than 5...10. The cross section of a thin-walled rod is called its profile.

        To select the optimal combination of a given load, allowable load, deflection, material and dimensions of the beam, moment of inertia, moment of resistance, bending moment, we use the graphic-analytical method and form a system of nomograms.

System of nomograms #1

F1max = 60 ... 300 kgf

F2max = 120 ... 600 kgf

F3max = 240 ... 1200 kgf

F4max = 480 ... 2400 kgf

L = 2 ... 5 m

F = 30 ... 1600 kgf

h0 = 50 ... 75 mm

h1 = 20 ... 63 mm

d0 = 55 ... 85 mm

d1 = 20 ... 70 mm

W = 6 ... 54 cm3

s=700 ... 3000 kgf/cm2

E·105 = 4 ... 21 kgf/cm2

J = 30 ... 174 cm4

System of nomograms #2

F1max = 10 ... 400 kgf

F2max = 20 ... 800 kgf

F3max = 40 ... 1600 kgf

F4max = 80 ... 3200 kgf

L = 1 ... 2.5 m

F = 40 ... 1800 kgf

h0 = 35 ... 65 mm

h1 = 20 ... 53 mm

d0 = 40 ... 70 mm

d1 = 20 ... 56 mm

W = 1 ... 36 cm3

s= 700 ... 3000 kgf/cm2

E·105 = 4 ... 21 kgf/cm2

J = 11 ... 138 cm4

System of nomograms #3

F1max = 20 ... 500 kgf

F2max = 40 ... 1000 kgf

F3max = 80 ... 2000 kgf

F4max = 160 ... 4000 kgf

L = 0.5 ... 1.1 m

F = 50 ... 1800 kgf

h0 = 25 ... 55 mm

h1 = 15 ... 46 mm

d0 = 30 ... 70 mm

d1 = 15 ... 49 mm

W = 1 ... 36 cm3

s= 600 ... 3000 kgf/cm2

E·105 = 2.5 ... 21 kgf/cm2

J = 3 ... 138 cm4

Beam calculation parameters for deflection (bending)

Fmax - maximal loading, kgf;

W - moment of resistance, cm3;

s - bending stress, kgf/cm2;

L - length of a beam, m;

F - loading in dangerous section, kgf;

E - modulus of elasticity, kgf/cm2;

J - moment of inertia, cm4;

ó - deflection in dangerous section, mm;

h0 - external dimension of a square pipe (beam), cm;

h1 - internal dimension of a square pipe, cm;

d0 - external diameter of a pipe (beam), cm;

d1 - internal diameter of a pipe, cm;

Red color on illustration allocates determined parameters of a beams

 

The procedure for grapho-analytical calculation of a beam for deflection

1. We find on the graphs the known values of the parameters (calculated or initial - in the first approximation).

2. The unknown values of the remaining parameters are found using adjacent nomograms.

 

 

Examples - Beam Deflection Calculation

Example 1 The horizontal bar is a steel pipe (steel 20X) with a length L = 1 m with an outer diameter d0 = 34 mm and an inner diameter d1 = 26 mm with loosely fixed ends. Athlete weight - F=100 kg. In this case, we have the third loading option with a force of 100 kgf.

Using the nomogram No.1b we determine the moment of resistance for a given profile - W=2,7 cm3. Allowable bending stress for a given pipe material is taken s=1500 kgf/cm2. On the nomogram No.2 we find Complex À=15100 êãf/cm3. On the nomogram No.1 we determine the value of the limit force for the third loading scheme F3max :  F3max = 158 êg.

Further on the nomogram No.3 we determine the intermediate value - Ì33·L2/4 = 33 kgf*m3. Since for the third loading scheme Ì33·L2/4 = y·J·E, find on the nomogram No. 4 the value Complex B = 17 cm5 (the value of the modulus of elasticity of steel is taken Å=20·105kgf/cm2). Using the nomogram No. 5b we determine the moment of inertia for a given profile - J = 4,5 cm4. So, for a given moment of inertia J, the displacement value (deflection)  ó = 26 mm.

As a result of this calculation for the bend, the following result was obtained. 

Maximum load - 158 kg. The horizontal bar under the weight of an athlete of 100 kg will bend by 27 mm.

Let's carry out the calculation for the given conditions using an engineering calculator. As a result of an exact calculation, we get:

W = 2,54 cm3;    F3max=152,4 kgf;    J=4,32 cm4;    ó=24 mm.

 

Example 2. The frame with harrows attached to it has   weight 900 kg. The entire structure is cantilevered on several square profile beams. Console length 3 m. 

Perform beam deflection calculations. Determine the number of beams and section parameters. 

 

Example 3. How many bags weighing 50 kg each can be evenly folded onto two square pipes with an outer diameter of 55 mm and an inner diameter of 40 mm, placed on two supports with a distance between them of 2.7 m? Determine the deflection of the pipes if you lay a fourth of this number of bags. Specified pipe material with characteristics -
s=1300 kgf/cm2,    E=2x106 kgf/cm2.

We take the number of beams equal to four. 

Profile options - h0 = 70 mm,  h1 = 50 mm.

Then each beam has a load of 225 kgf from the weight of the frame with harrows (1 loading option). Choose a material with the following parameters - 
s=2200 kgf/sm2,    E=2x106 kgf/cm2.

We have the fourth loading scheme. We find the value of the maximum allowable load. We accept the condition - the load under the bags should be ~ 20% less than the maximum allowable load. We increase the obtained value by 2 times (by the number of pipes). 

Graph-analytical method Calculator Graph-analytical method Calculator

W = 42 cm3

J = 147 cm4

F1max = 305 kg

y = 70 mm

W = 42,29 cm3

J = 148 cm4

F1max = 310,12 kg

ó = 68,4 mm

W = 20 cm3

J = 55 cm4

F3max = 768 kgf

Fsym (80% F3max) = 1228,8 kgf

Number of bags - 24 pieces

F = 307 kg

y = 77 mm

W = 19,97 cm3

J = 54,9 cm4

F3max = 769,2 kg

Fsym (80% F3max) = 1230,7  kgf

Number of bags - 24 pieces.

F = 307,7 kg

ó = 72 mm

 

 

Reference information for beam deflection calculation


Permissible stresses are the maximum values of the design stresses that can be allowed in a dangerous section, while ensuring the reliability of the part required under operating conditions.

  Table 1 - Permissible stress during bending of steels of different grades under the influence of a load (constant, variable, alternating) after various types of heat treatment

Material

 

Heat treatment Allowable bending stress, kgf/cm2
static load variable load load is sign-variable
  

Steel 15

Normalization

950

800

600

Carburizing with water quenching and subsequent tempering for hardness HRC 56 - 62

1500

1150

800

Steel 35

Normalization

1350

1100

800

Improvement

2100

1550

1000

Hardening in water and then tempering for hardness HRC 33-43

2700

2000

1350

Steel 45

Annealing

1350

1100

800

Normalization

1550

1250

950

Improvement

2200

1750

1300

Hardening in water and then tempering for hardness HRC 38-48

3000

2200

1450

Steel 20X

Normalization

1500

1150

800

Improvement

2100

1550

1000

Carburizing with oil quenching and hardness tempering 56-62

3000

2200

1400

Steel 40X

Annealing

1800

1400

1000

Improvement

2700

2000

1350

Oil quenching followed by hardness tempering HRC 37-41

4300

3100

1900

Oil quenching followed by hardness tempering HRC 46-50

5100

3700

2300

12XH3

Normalization

1900

1400

950

Carburizing with oil quenching and hardness tempering HRC 55-61

3200

2400

1550

Unit conversion: 1 kgf/cm2 = 98,0665 kPa

 

  Table 2 - Modulus of elasticity of various materials

Material

Modulus of elasticity (Young's modulus)

 Å·105, kgf/cm2

Aluminum alloy casting

Duralumin after annealing at 370 0Ñ

Â95-ÒI  -

ÀÊ8-TI, Ä16-Ò  -

ÀÌã6  -

6.7 - 7.2

7 - 7.5

7

7.2

6.8

Bakelite (without fillers)

0.2 - 0.6

Phosphor bronze rolled

11.5

Titanium alloy   -  ÂÒ6

11.2

Iron Armco

welding

21

16 - 20

Magnesium alloys  -  ÂÌ65-I, ÌÀ2-I

4.2

Brass, cold drawn

9.1 - 9.9

Cold drawn rolled copper

11 - 13

Monel metal

17.6

Lead

1.7

Steel casting

17.5

Carbon steels

20 - 21

Nickel-chromium steel

- 30ÕÃÑÍÀ

- 12Õ2ÍÂÔÀ

20 - 21

19.5

20

Glass

4.9 - 6.3

Textolite

0.6 - 1

Celluloid

0.17 - 0.2

Zinc rolled

8.4

Cast iron grey, white

malleable

15.5 - 16 

äî 15.5

Nickel

21

Tungsten

36

Gold

1.6

Nylon

0.5

Bone

2

Fiberglass  - ÀÔ -10Â

2.44


Modulus of elasticity (Young's modulus  [Thomas Young, 1773 - 1829] ) - coefficient of proportionality between F/S (force/cross-sectional area) and relative elongation (tension) dL/L, obtained for a certain material.

 

 graphic-analytical systems        The contact information. E-mail:nomogramka@gmail.com

      Copyright © 2005-2022  All rights reserved